hessian
Module for calculating the hessian.
This code was copied and modified from PyHessian (https://github.com/amirgholami/PyHessian/blob/master/pyhessian/hessian.py).
PyHessian
PyHessian class for computing Hessian-related quantities.
This class provides methods to compute eigenvalues, eigenvectors, trace, and density of the Hessian matrix using various methods such as power iteration, Hutchinson's method, and stochastic Lanczos algorithm. It supports different model architectures and can be used with custom data loaders.
Source code in src/landscaper/hessian.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
__init__(model, criterion, data, device, hessian_generator=generic_generator, try_cache=False, use_complex=False)
Initializes the PyHessian class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The model for which the Hessian is computed. |
required |
criterion
|
Module
|
The loss function used for training the model. |
required |
data
|
DataLoader
|
DataLoader providing the training data. |
required |
device
|
DeviceStr
|
Device to run the computations on (e.g., 'cpu' or 'cuda'). |
required |
hessian_generator
|
callable
|
Function to generate per-sample gradients. Defaults to generic_generator. |
generic_generator
|
try_cache
|
bool
|
Defaults to false. Caches per-sample gradients along with their computational graphs. Should make the computation faster, but can cause out of memory errors. If you run into memory problems, try setting this to false first. |
False
|
use_complex
|
bool
|
Defaults to false. Forces the calculator to use complex values when performing computations. This is determined automatically, but this kwarg is included as a backup. |
False
|
Source code in src/landscaper/hessian.py
density(iter=100, n_v=1)
Computes the estimated eigenvalue density using the stochastic Lanczos algorithm (SLQ).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iter
|
int
|
Number of iterations used to compute the trace. Defaults to 100. |
100
|
n_v
|
int
|
Number of SLQ runs. Defaults to 1. |
1
|
Returns:
Type | Description |
---|---|
tuple[list[list[float]], list[list[float]]]
|
tuple[list[list[float]], list[list[float]]]: A tuple containing two lists: - eigen_list_full: List of eigenvalues from each SLQ run. - weight_list_full: List of weights corresponding to the eigenvalues. |
Source code in src/landscaper/hessian.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
eigenvalues(maxIter=100, tol=0.001, top_n=1)
Computes the top_n eigenvalues using power iteration method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
maxIter
|
int
|
Maximum iterations used to compute each single eigenvalue. Defaults to 100. |
100
|
tol
|
float
|
The relative tolerance between two consecutive eigenvalue computations from power iteration. Defaults to 1e-3. |
0.001
|
top_n
|
int
|
The number of top eigenvalues to compute. Defaults to 1. |
1
|
Returns:
Type | Description |
---|---|
tuple[list[float], list[list[Tensor]]]
|
tuple[list[float], list[list[torch.Tensor]]]: A tuple containing the eigenvalues and their corresponding eigenvectors. |
Source code in src/landscaper/hessian.py
hv_product(v)
Computes the product of the Hessian-vector product (Hv) for the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v
|
list[Tensor]
|
A list of tensors representing the vector to multiply with the Hessian. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[float, list[Tensor]]
|
A tuple containing the eigenvalue (float) and the Hessian-vector product (list of tensors). |
Source code in src/landscaper/hessian.py
trace(maxIter=100, tol=0.001)
Computes the trace of the Hessian using Hutchinson's method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
maxIter
|
int
|
Maximum iterations used to compute the trace. Defaults to 100. |
100
|
tol
|
float
|
The relative tolerance for convergence. Defaults to 1e-3. |
0.001
|
Returns:
Type | Description |
---|---|
list[float]
|
list[float]: A list containing the trace of the Hessian computed over the iterations. |
Source code in src/landscaper/hessian.py
dimenet_generator(model, criterion, data, device)
Calculates the per-sample gradient for DimeNet models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The DimeNet model to calculate per-sample gradients for. |
required |
criterion
|
Module
|
Function that calculates the loss for the model. |
required |
data
|
Any
|
Source of data for the model. |
required |
device
|
DeviceStr
|
Device used for pyTorch calculations. |
required |
Yields:
Type | Description |
---|---|
tuple[int, Tensor]
|
The size of the current input (int) and the gradient. |
Source code in src/landscaper/hessian.py
generic_generator(model, criterion, data, device)
Calculates the per-sample gradient for the model.
Default implementation used for PyHessian; the underlying code expects that this generator returns the size of the input and the gradient tensor at each step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
The model to calculate per-sample gradients for. |
required |
criterion
|
Module
|
Function that calculates the loss for the model. |
required |
data
|
Any
|
Source of data for the model. |
required |
device
|
DeviceStr
|
Device used for pyTorch calculations. |
required |
Yields:
Type | Description |
---|---|
tuple[int, Tensor]
|
The size of the current input (int) and the gradient for that sample. |